Multiple Analyses as an Alternative Method to Avoid Ecological Problem, Using Students and Teacher Data of Timss 2011

Document Type : Original Article



Ecological problem in the analysis of aggregate data is a serious methodological issue in most studies. In the present paper, the problems of Aggregate analysis and disaggregate analysis has been analyzed, and multilevel modeling procedures, specifically Hierarchical Linear Modeling (HLM) as an alternative method is introduced. This research is correlational and has analyzed the relationships of variables among 6029 eighth-grade students (2816 girls and 3213 boys) who had participated in TIMSS 2011 and completed the TIMSS questionnaire. The results showed that there is a significant relationship between Homework time and Homework opportunity with mathematics achievement at students-level; however, it was not significant at teachers-level.  The utility of multiple analyses at nested data set were also confirmed.


نقش، زهرا و مقدم، اعظم (1391). کاربرد تکنیک‌های مدل‌یابی چندسطحی در تحلیل داده‌های تیمز 2007 و مقایسه آن با تحلیل یک‌سطحی. اندازه‌گیری تربیتی. 8(3)، 133 – 154.
کیامنش، علیرضا؛ حجازی، الهه و نقش، زهرا (1395). رابطه مدت‌زمان انجام تکلیف و پیشرفت ریاضی: کاربرد مدل‌یابی چندسطحی برای تحلیل داده‌های تیمز 2011. نوآوری‌های آموزشی، 60 (15)، 61 – 74.
Barcikowski, R. S. (1981). Statistical power with group mean as the unit of analysis. Journal of Educational Statistics, 6(3), 267-285.
Bronfenbrenner, U. (1976). The experimental ecology of education. Educational Researcher, 5(9), 5-15.
Brown, B. W. & Saks, D. H. (1981). The microeconomics of schooling. Review of Research in Education, 9 (1), 217-254.
Bryk, A. S. & Raudenbush, S. W. (1992). Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park, CA: Sage.
Burstein, L. (1980). The analysis of multi-level date in educational research and evaluation. Review of Research in Education, 8(1), 158-233.
Busing, F. (1993). Distribution characteristics of variance estimates in two level models. Leiden University, Department of Psychometrics and Research Methodology.
Burstein, L.; Linn, R. L. & Capell, F. J. (1978). Analyzing multilevel data in the presence of heterogeneous within-class regressions. Journal of Educational and Behavioral Statistics, 3(4), 347-383.
Cronbach, L. J. (1976). Research on classroom and schools: Formulation of questions, design and analysis. Stanford, CA: Stanford Evaluation Consortium.
Ethington, C. A. (1997). A hierarchical linear modeling approach to studying college effects. In J. Smart (ed), Higher Education: Handbook of Theory and Research, 12, (pp. 165-194). New York: Agathon.
Goldstein, H. (1995). Multilevel statistical models (2nd ed). London, United Kingdom: Edward Arnold.
Goldstein, H. (1997). Methods in school effectiveness research. School Effectiveness and School Improvement, 8(4), 369-395.
Goldstein, H. & Rasbash, J. (1990). Improved approximations for multilevel models with binary responses. London, United Kingdom: University of London.
Goodman, L. (1959). Some alternatives to ecological correlation. American Journal of Sociology, 64, 610-625.
Greenland, S. (2001). Ecologic versus individual-level sources of bias in ecologic estimates of contextual health effects. International Journal of Epidemiology, 30(6), 1343-1350.
Greenland, S. & Morgenstern, H. (1989). Ecological bias, confounding, and effect modification. International Journal of Epidemiology, 18, 269-274.
Greenland, S. & Robins, J. M. (1994). Ecologic studies-biases, misconceptions, and counterexamples. American Journal of Epidemiology, 139, 747-760.
Hacker, A. (1997). Money: Who has how much and why. New York: Scribner.
Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Hillsdale, NJ: Lawrence Erlbaum Associates.
Kim, K. S. (1990). Multilevel data analysis: A comparison of analytical alternatives. Los Angeles, CA: University of California.
King, G. (1997). A solution to the ecological inference problem: Reconstructing individual behavior from aggregate data. Princeton, NJ: Princeton University Press.
Kousser, J. M. (2001). Ecological inference from Goodman to King.Historical Methods, Journal of Historical Methods, 34 (3), 101-126.
Kreft, Ita G. G. (1996). Are multilevel techniques necessary? An overview, including simulation studies. Los Angeles: California Stata University.
Mischel, W. (1977). The interaction of person and situation. In D. Magnusson & N.S. Endler (Eds), Personality at the crossroads. Current issues in interactional psychology (pp. 333-352). Hillsdale, NJ: Erlbaum.
Morgenstern, H. & Thomas, D. (1993). Principles of study design in environmental epidemiology. Environmental Health Perspectives, 101 (4), 23-38.
Oakes, J. M. (2009).Commentary: Individual, ecological and multilevel fallacies. International Journal of Epidemiology, 38, 361-368.
Paterson, L. (1991). An introduction to multilevel modeling. In S. W. Raudenbush & J. D. Willms (Eds). Schools, classroom, and pupils (pp.13-25). San Diego, CA: Academic Press, Inc.
Raudenbush, S. W. & Bryk, A. S. (1986). A hierarchical model for studying school effects. Sociology of Education, 59, 1-117.
Rodriguez, G. & Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society. Series A (Statistics in Society), 158 (1), 73-89.
Robinson, W. S. (1950). Ecological correlations and behavior of individuals. American SociologicalReview, 15, 351-357.
Selvin, H. C. (1958). Durkheim's suicide and problems of empirical research. American Journal of Sociology, 63, 607-619.
   Shively, W. P. (1969). Ecological inference: The use of aggregate data to study individuals. The American Political Science Review, 63(4), 1183-1196.
Sowell, T. (2009).The housing bottom and bust. New York, NY: Basic Books.
Tate, R. & Wongbundhit, Y. (1983). Random versus nonrandom coefficient models for multilevel analysis. Journal of Educational Statistics, 8, 103-120.
Van Der Leeden, R. & Busing, F. (1994). First iteration versus IGLS/RIGLS estimates in two-level models: A Monte Carlo study with ML3.Leiden: Department of Psychometrica and Research Methodology, Leiden University.
Webb, N. M. (1977). Learning in individual and small group settings. Stanford, CA: Stanford University School of Education.