The Effects of Item Nonresponse on Psychometric Indexes: Evidence against Deletion Method

Document Type : Original Article



Item nonresponse is a serious challenge to the measurements in large-scale studies which plays a considerable role in decision and policy making about educational and/or cultural issues. This challenge affects both the process of instrument construction and its application because of big error and bias in the estimation of psychometric indexes and scores distribution parameters. Therefore, this paper aims at simulating the effects of different nonresponse rates under completely random and nonrandom item nonresponse by using a real data set. The results show that a nonresponse rate less than 5% can be ignorable under completely random nonresponse where there is no notable difference between respondents and non-respondents. In contrast, psychometric indexes (Cronbach’s alpha, split-half reliability coefficient and validity coefficient) and scores distribution parameters (mean, standard deviation and quartiles) can be biased and inaccurate if the item nonresponse at any rate is nonrandom. In addition, item nonresponse can lead to wide confidence intervals and misleading results. Hence, the simulation findings do not advocate the deletion of non-respondents from a data set as a solution to the nonresponse challenge. 


Azar, B. (2002). Finding a solution for missing data. Monitor on Psychology, 33 (7), 70.
Bhaskaran, K.; & Smeeth, L. (2014). What is the difference between missing completely at random and missing at random? International Journal of Epidemiology, 43 (4), 1336-1339.
Bodner, T. E. (2006). Missing data: Prevalence and reporting practices. Psychological Reports, 99, 675–680.
Cao, W.; Tsiatis, A. A.; & Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika, 96, 723-734.
Dillman, D. A.; Eltinge, J. L.; Groves, R. M.; & Little, R. J. (2002). Survey nonresponse in design, data collection, and analysis. Survey nonresponse, 3-26.
Enders, C. K. (2003). Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data. Psychological methods8 (3), 322.
Fowler Jr, F. J. (2013). Survey research methods. Sage publications.
Graham, J. W.; & Coffman, D. L. (2012). Structural equation modeling with missing data. Handbook of structural equation modeling, 277-295.
Groves, R. M.; & Couper, M. P. (2012). Nonresponse in household interview surveys. John Wiley & Sons.
Groves, R. M.; Fowler Jr, F. J.; Couper, M. P.; Lepkowski, J. M.; Singer, E.; & Tourangeau, R. (2011). Survey methodology (Vol. 561). John Wiley & Sons.
Hox, J.; De Leeuw, E. D.; Couper, M. P.; Groves, R. M.; De Heer, W.; Kuusela, V.; …& Belak, E. (2002). The influence of interviewers’ attitude and behaviour on household survey nonresponse: An international comparison. In: R. M. Groves, D. A. Dillman, J. L. Eltinge, & R.J.A. Little (Eds). Survey nonresponse. New York: Wiley, pp. 103-120
Knol, M. J.; Janssen, K. J.; Donders, A. R. T.; Egberts, A. C.; Heerdink, E. R.; Grobbee, D. E.; ... & Geerlings, M. I. (2010). Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example. Journal of Clinical Epidemiology, 63 (7), 728-736.
Kromrey, J. D.; & Hines, C. V. (1994). Nonrandomly missing data in multiple regression: An empirical comparison of common missing-data treatments. Educational & Psychological Measurement, 54 (3), 573-593.
Little, R. J.; & Rubin, D. B. (2014). Statistical analysis with missing data. John Wiley & Sons.
Mcdonald, R. A.; Thurston, P. W.; & Nelson, M. R. (2000). A Monte Carlo study of missing item methods. Organizational Research Methods, 3 (1), 71-92.
Peugh, J. L.; & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74 (4), 525-556.
Raghunathan, T. E. (2004). What do we do with missing data? Some options for analysis of incomplete data. Annu. Rev. Public Health, 25, 99-117.
Roth, P. L. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology, 47 (3), 537-560.
Seaman, S.; Galati, J.; Jackson, D.; & Carlin, J. (2013). What Is Meant by" Missing at Random"? Statistical Science, 257-268.
Tang, G.; Little, R. J.; & Raghunathan, T. E. (2003). Analysis of multivariate missing data with nonignorable nonresponse. Biometrika, 747-764.
Tourangeau, R.; Rips, L. J.; & Rasinski, K. (2000). The psychology of survey response. Cambridge University Press.
Van der Heijden, G. J.; Donders, A. R. T.; Stijnen, T.; & Moons, K. G. (2006). Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example. Journal of Clinical Epidemiology, 59 (10), 1102-1109.