سنجش صلاحیت‌‌های شناختی چندسطحی سواد ریاضی دانش‌آموزان پایه نهم: کاربردی از مدل پی‌جی‌دینا

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار دانشگاه الزهرا، دانشکده علوم تربیتی و روان‌شناسی

چکیده

در چند دهه اخیر، چارچوب نظریِ جدیدی در زمینه اندازه‌گیری آموزشی با عنوان «سنجش شناختی تشخیصی» به وجود آمده که با پیوند دادن نظریه‌های شناختی با آموزش، بازخورد تشخیصی تکوینی از طریق گزارش نیمرخ تسلط آزمودنی در صلاحیت‌های شناختی مورد نیاز را برای پاسخگویی به سؤال‌ها ارائه می‌دهد. در این پژوهش با استفاده از یک مدل اندازه‌گیری جدید در سنجش شناختی تشخیصی به نام پی‌جی‌دینا (چن و دی‌لتوره، 2013) روی یک آزمون سواد ریاضی، به تعیین میزان اطلاعات تشخیصی که هر یک از سؤال‌های آزمون می‌توانند به دست دهند، اقدام شده است. طراحی آزمون سواد ریاضی بر مبنای چارچوب برنامه سنجش بین‌المللی دانش‌آموزان صورت گرفته است. صلاحیت‌های شناختی زیربنای این آزمون شامل ارتباطات، ریاضی‌وار کردن، بازنمایی، استدلال، طراحی راهبرد برای حل مسئله و استفاده از زبان و عملیات نماد‌ین، رسمی و فنی، در قالب ماتریس کیو توسط تیم متخصص در حوزه آموزش ریاضی تدوین و داده‌ها با استفاده از اجرای آزمون روی 700 دانش‌آموزان 15 ساله به دست آمده است. شاخص‌های برازش مدل، نیمرخ کلاس‌های مکنون، پارامترهای سؤال‌ها و نیمرخ صلاحیتی آزمودنی‌ها بر مبنای مدل پی‌جی‌دینا، تحلیل شده‌اند. یافته‌ها نشان‌دهنده برازش مناسب این مدل با داده‌ها و ارائه اطلاعات تشخیصی مفید در سطح سؤال‌ها بر مبنای مدل مذکور است.

کلیدواژه‌ها


محسن‌پور، مریم؛ گویا، زهرا؛ شکوهی‌یکتا، محسن؛ کیامنش، علیرضا و بازرگان، عباس(1393). طراحی و ساخت آزمونی برای صلاحیت‌های شناختی سواد ریاضی دانش‌آموزان ایرانی بر مبنای مطالعات پیزا. دوفصلنامهنظریهوعملدربرنامهدرسی، 2 (4)، 5 – 34.

Chen, J. & de la Torre, J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37, 419-437.

De la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.doi:10.1007/s11336-011-9207-7

Di Bello, L. V.; Roussos, L. A. & Stout, W. (2007). Review of Cognitively Diagnostic Assessment and a Summary of Psychometric Models. In C. V. Rao & S. Sinharay (Eds.), Handbook of statistics (Vol. 26, Psychometrics, pp. 979-1027). Amsterdam, the Netherlands: Elsevier.

Haberman, S. J.; von Davier, M. & Lee, Y. (2008). Comparison of multidimensional item response models: multivariate normal ability distributions versus multivariate polytomous distributions (ETS Research Rep. No. RR-08-45). Princeton, NJ: ETS.

Jang, E. (2008). A Framework for Cognitive Diagnostic Assessment. In C. A. Chapelle, Y.‐R. Chung, & J. Xu (Eds.), towards adaptive CALL: Natural language processing for diagnostic language assessment (pp. 117‐131). Ames, IA: Iowa State University.

Karelitz, T. M. (2004). Ordered category attribute coding framework for cognitive assessments (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.

Kunina‐Habenicht, Olga; Rupp, André A. & Wilhelm, Oliver (2012). The Impact of Model Misspecification on Parameter Estimation and Item‐Fit Assessment in Log‐Linear Diagnostic Classification Models. JEM, 49 (1), 59 – 81.

Leighton, J. P. Gierl, M. J. & Hunka, S. M. (2004). The Attribute Hierarchy Method for Cognitive Assessment: A Variation on Tatsuoka’s Rule-Space Approach. Journal of Educational Measurement, 41 )3(, 205-237.

Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models (with discussion). Measurement: Interdisciplinary Research and Perspectives, 11, 71-137.

Niss, M. & Højgaard, T. (Ed.). (2011). Competencies and Mathematical Learning, Ideas and inspiration for the development of mathematics teaching and learning in Denmark, Roskilde: Roskilde University.

Niss, M. & Jensen, T. H. (eds) (2002). Kompetencer og matematiklæring –Ideer og inspiration til udvikling af matematik undervisning i Danmark, number 18 in Uddannelsesstyrelsens temahæfteserie. The Ministry of Education, Copenhagen, Denmark.

OECD (2009). Learning Mathematics for Life: A Perspective from PISA. Paris: OECD Publications.

OECD (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. Paris: OECD Publications.

Ravand, H. (2015). Application of a Cognitive Diagnostic Model to a High-Stakes Reading Comprehension Test. Journal of Psychoeducational Assessment, 34 (8) 782–799.

Robitzsch, A.; Kiefer, T. George, A. & Uenlue, A. (2014). Package CDM, Date/Publication 2014-04-11 12:27:06 UTC

Rojas, G.; de la Torre, J. & Olea, J. (2012). Choosing between general and specific cognitive diagnosis models when the sample size is small. Paper presented at the Annual Meeting of the National Council on Measurement in Education, Vancouver, British Columbia, Canada.

Roussos, L. A.; Templin, J. L. & Henson, R. A. (2007). Skills Diagnosis Using IRT-Based Latent Class Models. Journal of Educational Measurement, 44 (4), 293–311.

Rupp, A. A.; Templin, J. & Henson, R.A. (2010). Diagnostic Measurement, Theory, Methods, and Applications. New York: The Guilford Press.

Stacey, K. (2012).The International Assessment of Mathematical literacy: PISA 2012 Framework and Items. 12th International Congress on Mathematical Education. 8 July – 15 July, COEX, Seoul, Korea.

Turner, R.; Blum, W. & Niss, M. (2015). Using Competencies to Explain Mathematical Item Demand: A Work in Progress. In K. Stacey & R. Turner (Eds.), Assessing Mathematical Literacy, the PISA Experience (Vol. 26, Psychometrics, pp. 85-116. Amsterdam, the Netherlands: Springer.

Von Davier, M. (2005). mdltm: Software for the General Diagnostic Model and for Estimating Mixtures of Multidimensional Discrete Latent Traits Models. [Computer software]. Princeton, NJ: ETS